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Abstract
In this paper we consider a population of would-be migrants in a developing country.
To begin with, this population is divided into two sets: those who save by themselves
to pay for the cost of their migration, and those who pool their savings with the
savings of another would-be migrant to pay for the cost. Saving jointly brings
forward the timing of migration: funds needed to pay for the migration of one of the
co-savers can be accumulated more quickly, enabling him, using his higher income
at destination than at origin, to speed up the migration of his co-saver. However,
people may hesitate to save jointly for fear that a co-saver who is the first to migrate
might fail to keep his part of the agreement. We show that an increase in the cost
of migration stimulates the formation of co-financing, joint-saving arrangements
that enable would-be migrants to cushion the impact of the increase. The evolution
of joint-saving arrangements can create a time window during which the intensity
of migration need not decrease: no fewer people (and conceivably even more of
them) will migrate during a time interval that follows the increase in the cost. This
prediction is at variance with the canonical economic model of migration according
to which if migration is costlier, then there will be less of it.
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1. Introduction

According to the canonical economic model of migration, if migration is costlier,
there will be less of it. (Early examples of this model include the widely cited articles
by Sjaastad, 1962, and Todaro, 1969.) In migration research and in migration policy
formation, this notion has become the conventional wisdom, mainly because of its
intuitive appeal. In this paper we show that an increase in the cost of migration can
result in intensification of migration: we say that intensification occurs when more
people migrate during a time interval that follows the increase in cost than would have
migrated during the same time interval had there been no increase in cost. The reason
for this outcome is that an increase in the cost of migration can trigger changes in
the financial and social circumstances designed to enable would-be migrants to save
enough to pay for the cost of their migration. Specifically, as explained below and
modeled in the next two sections, the increase in cost can shift the line of demarcation
between the set of lone savers and the set of joint savers in favor of the latter. Because
saving jointly speeds up the accumulation of funds to pay for the cost of migration as
compared to saving alone, the number of migrants during a time interval that follows
the increase in the cost need not decrease, and may even increase.

In a review of immigration in American history, Abramitzky and Boustan (2017)
remark that in the nineteenth century “[o]nce migrant communities were established
in US cities and rural areas, many prospective migrants were able to travel on prepaid
tickets financed by friends or family” (p. 1314). In evaluating the role of costs in
shaping migration patterns, Abramitzky and Boustan note that those costs “need not
imply that the poor are priced out of migration because of a lack of credit or financing
for their journey. Both in the past and the present, there is evidence that immigrant
networks can alleviate such financial constraints” (p. 1325).

Ilahi and Jafarey (1999) report that in Pakistan informal contracts agreed between
migrants and their extended families, whereby the latter finance the migrants’
travel abroad: about 58% of the migrants borrow from their extended family, with
the amounts borrowed covering, on average, nearly half of the cost of migration.
Borrowing from the extended family is more common among migrants of rural
origin, who face higher costs of migration and are on average poorer, than among
migrants of urban origin. Akkoyunlu and Siliverstovs (2013) provide evidence that
a higher cost of migration from Turkey to Germany encourages the conclusion of
informal financial contracts between would-be migrants and their extended families
to pay for the cost of migration, and that the remittances that the migrants send
back are likely to be used to finance subsequent migration by other family members.
Genicot and Senesky (2004) report that Mexican migrants whose travel to the US
was arranged by “coyotes” (migrant smugglers) were more likely to have received
financial support from relatives and friends than Mexicans who set off to the US
on their own. A higher cost of migration (arising from paying a “coyote”) appears
to have been linked to reliance on an extended financial support network. Indeed,
Mexico-to-US migration, where an increase in border patrols made migration more
difficult and hence more expensive, but possibly resulting in higher flows, could serve
as a case study.
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Texts on migrants’ remittances have particularly acknowledged and documented
that would-be migrants are helped by their families in obtaining the funds needed to
pay for migration, and that once they have migrated and landed gainful employment
they share their destination earnings with their families by means of remittances.
(The articles on the reasons for sending remittances by Lucas and Stark, 1985,
and by Stark and Lucas, 1988, have inspired a large empirical literature that has
yielded insights about the motives for sending remittances and about the roles that
the earnings of migrants and the incomes of their families play in determining the
incidence of remittances and the sums remitted.) The line of reasoning advanced
in this paper is distinct. We model the behavior of a would-be migrant who enters
the “game” with own savings - these can be savings accumulated alone or jointly
with his family - yet still faces a period of waiting in order to amass the required
funds. Cooperation with another would-be migrant who faces a similar constraint
is a strategy that goes farther than reliance on the support that might be provided
by their own family. This perspective is similar to a setting in which a person who
seeks insurance, while already covered by some level of self insurance, can gain from
an exchange of insurance promises with another, independent self-insurer. And as
mentioned below in footnote 7, the perspective has features reminiscent of Rotating
Savings and Credit Associations.

We consider a setting in which people who seek to migrate are financially
constrained, so that prior to migrating they have to collect the funds needed to pay for
the cost of migration and initial settlement in a country of destination where incomes
are higher than at origin.1 We assume that a would-be migrant can do this either
by accumulating the required funds himself, “lone financing,” or by cooperating
with another individual, “joint financing.” In lone financing, the financier and the
migrant are one and the same, and the raising of funds to pay for migration precedes
and is completed prior to migration. In joint financing, migration and the financing
to pay for migration are intertwined: migration begins when sufficient funds are
amassed to allow one of the joint savers to set off, and co-financing by the migrant,
who lands a job in the country of destination, helps secure the funds needed to
facilitate the migration of the co-saver who has yet to migrate. There are advantages
and disadvantages to each method. Lone financing is free from the possibility of
others reneging, but it takes longer than (successful) joint financing. On the other
hand, while joint financing speeds up the accumulation of funds, it is subject to the
possibility that the co-saver who departs first might fail to support the migration of
the co-saver who has yet to migrate.2

What incentive does a migrant have not to renege? What measures are available
to an individual, who contributed to the savings pool but did not end up as the
first-to-go, to effectively dissuade the co-saver who has already left from reneging?
If they use means that help cement joint saving, the perceived risk involved in

1Bryan et al. (2014) find that even in the case of internal seasonal migration, the cost of travel, food, and
other incidentals during the trip poses a barrier to migration.
2Our interest in this paper is in the position of the line of demarcation between the two types of savers.
We abstract from other forms of finance for migration: either they do not exist, or are far too costly / far
too risky. Turning to loan sharks who might be willing to advance the funds needed to facilitate migration
might be worse than giving up migration altogether.
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joint financing can be moderated, and this form of financing will be attractive.
Conversely, when such means are not available, lone saving will be more appealing.
A standard menu of responses to the preceding two questions includes social
deterrents, reputational concerns, and repeat transactions, with obvious linkages
between the three. Compliance can be strengthened by applying social pressure,
for example in the form of sanctions such as ostracizing the miscreant migrant and
his family. The option of sanctioning will be effective when the migrant is close
in social space to a co-saver who has yet to migrate, but will not have teeth when
the contracting parties are distant in social space. Furthermore, sanctioning will be
more effective when the migrant wants to keep open the option of return migration,
regardless of whether return is imposed or voluntary, and regardless whether return is
temporary or permanent. In the “grand” scheme of things, this implies that migration
is not a final event, the last act in a sequence of moves; rather, it is a stage in a
process, part of a broader, lasting, and dynamic relationship. (This discussion implies
that although altruism can support compliance, if it is absent or fails, there are still
available means to press for adherence.)

Let the opening configuration be such that the population of would-be migrants
is divided into two sets: those who save enough by themselves to pay for the cost
of their migration, and those who pair with others to jointly pool savings to pay for
the cost. The first set consists of people who accepted the time required for lone
saving or who, while preferring to save jointly, did not find people in sufficiently
close proximity in social space to make low risk co-saving arrangements feasible.
Let the cost of migration increase. Then, lone savers will be less hostile to entering
a joint financing arrangement with people who are farther in social space if the risk
arising from participation with them in joint financing is more acceptable than the
delay in migration caused by the time required to provide for lone financing. As a
result, in a time window following an increase in the cost of migration, the incidence
of migration need not be less.

As a back-of-envelope illustration of such an evolution of the financial
environment, suppose that at time zero there are four individuals at origin who seek to
amass the funds needed for them to migrate. Two individuals are lone savers, the other
two save together. Suppose that monthly income is 2, that the cost of migration is 12,
that individuals can set aside all but one unit of their monthly income, and that income
at the migration destination is twice the income at origin. The pattern of migration
will then be as follows. At the end of month six, one individual out of the two who
save together will migrate. Assuming the migrant sticks to the terms of the joint
savings agreement, three months later the other individual will migrate. And after
twelve months, the two lone savers will migrate. Now let the cost of migration rise
from 12 to 14 and suppose that, consequently, the two lone savers shift to joint saving;
saving alone as before would lead to too long a postponement. Then, after seven
months two individuals will migrate, and three and a half months later the remaining
two individuals will migrate. If we look at the time window of the first seven months,
then we will see that prior to the increase in cost, migration would have been by one
individual, and that following the increase, migration is by two individuals. This is
the intensification alluded to above. Figure 1 which presents these configurations is
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Figure 1. The timing of migration in months, t , of four individuals: when the cost of migration, C, is 12
(in which case, two individuals are lone savers, and the other two individuals save together); and when
the cost of migration is 14 (in which case, two pairs of individuals who save together are formed). Light
circles represent a migrant when the cost of migration is 12, dark circles represent a migrant when the cost
of migration is 14.

drawn under the assumption of perfect compliance by the individuals who migrate
first.3

In Section 2 we construct an intertemporal utility model to investigate the
possibility that an individual enters a co-saving agreement with another individual to
save together the sum needed to pay for the cost of migration and initial settlement in
the country of destination, thereby speeding up migration. In Section 3 we present our
two main results. First, we show that the propensity to enter a co-saving agreement
which carries the risk of a co-saver defaulting increases with the cost of migration.
The reason for the evolution of such an arrangement is that when the cost becomes
higher, people choose the lesser of two evils: joint saving which could be risky, and
postponed timing of migration if saving alone. When it comes to the risk that a
co-saver will renege, a stronger desire to save jointly lowers the bar of acceptable
social affinity of co-savers. Second, we formulate a condition under which the
dynamics (time pattern) of the migration outflow will be such that there will be a post
cost-increase period during which the incidence of migration will not be lower when
the cost of migration is higher. In Section 4 we list tentative empirical implications.
Section 5 concludes. In the Mathematical Addendum we present a detailed protocol
for solving the utility-maximization problem of individuals who save jointly. That
procedure yields the parameters that we use in the streamlined analysis undertaken in
the main text of the paper.

2. Formal modeling

In a population of would-be migrants, let the normalized income, y(t), of a member
of this population be given by

3Intensification of migration in the time window of the first seven months will occur even when one or two
of the individuals who migrate first under the two joint saving agreements fail to comply and the betrayed
individuals fail to enforce compliance.
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y(t) =
{

2 when working in the home country,

α + β when working in the destination country,

where time, t , measured in months, is taken to be continuous. We assume that the
income of an individual is divided into two parts: the part needed to meet the essential
cost of living, denoted by l(t), and the remainder, referred to henceforth as the spare
income, which can be set aside as savings or spent on non-essential consumption.
When in the home country, the monthly essential cost of living is l(t) = 1, and the
monthly spare income is 1. When in the destination country, the monthly essential
cost of living is l(t) = β , where β ≥ 1, and the monthly spare income is α > 1. The
savings of an individual at time t are denoted by s(t). In addition, we assume a zero
rate of interest on savings.

The individual’s instantaneous utility function is u(x(t)) = x(t) + 1, where
x(t) = y(t) − s(t) − l(t) is the individual’s non-essential consumption at time t .
Resorting to this representation assumes that covering the essential needs of living
yields the same level of utility (which is equal to 1) in both countries. The utility of
the individual can be increased by spending the spare income x(t) on consumption.

Let the intertemporal preferences of the individual be expressed by a continuous
discount term e−δt , where δ > 0 is the discount factor. And let the expected length
of the working life of an individual be T months. Then, the lifetime utility of an
individual is

U(x(t)) =
T∫
0

e−δtu(x(t))dt.

Suppose that the cost of migration which, for example, includes the fees paid to
brokers and the expenses associated with the initial settlement in the destination
country, is equal to C > 0. To render migration feasible, in all the scenarios analyzed
below we assume that C < 2T / 3,4 and that α is greater than some critical value

α0 > 1: α >
eδT − 1

eδ(T −3C/2) − 1
≡ α0.5

As a benchmark for comparing joint financing with lone financing, we consider
first lone financing.

Saving alone

Consider an individual who at month t = 0 starts to save to pay for his migration. As
shown in Lemma M2 in the Mathematical Addendum, it is optimal for an individual
to save his spare income of 1 every month. Because the individual’s savings need

4Consider an individual whose length of working life is T months. Then, this condition implies that the
cost of migration is not too high to prevent an individual who after co-saving for C/ 2 months was betrayed
and left to save on his own for a period of C months: C/ 2 + C < T . We revisit this condition in the
discussion that follows the proof of Lemma M1 in the Mathematical Addendum.
5The condition on α being greater than the critical value α0, which renders migration a viable option
under lone saving and under joint financing, is derived formally in the Mathematical Addendum (consult
Lemma M1).
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to build up to meet the cost of migration, C, the number of months of savings is
TA = C (the subscript A stands for alone). Thus, the lifetime utility of an individual
who saves alone at the said rate of 1 per month (during which time his non-essential
consumption is nil), and who then migrates (during which time his non-essential
consumption is α) is

UA =
TA∫
0

e−δtu(0)dt +
T∫

TA

e−δtu(α)dt. (1)

Saving jointly

Consider now an arrangement between two individuals who save together to meet
the cost of migration. In all relevant respects other than for the distribution of
the levels of affinity to others, which are individual-specific and are characterized
below, the individuals are similar to each other. This implies symmetry and invites
randomness in the selection of roles. We model the joint saving arrangement as
follows. The individuals agree to save the maximum amount available to them in
the home country (1 per month each), and they entrust the accumulated funds to a
trustworthy third party (for example, the funds are kept safe by a village elder). Once
the individuals save enough between them to pay for the migration of one of them,
which happens after C/ 2 months of joint saving, they toss a coin to select the one
who will migrate first; henceforth we refer to this individual as the winner of the
draw, and to the other individual as the loser of the draw.6,7 The winner of the draw
migrates. Using his higher income in the destination country, which allows for greater
savings than at origin, he helps the loser of the draw who stayed behind to reach the
destination country as fast as possible. After the departure of the winner of the draw,
the individuals continue to save the maximum amounts possible: the loser of the draw
continues to save 1 per month in the home country, and the winner of the draw saves
α per month in the destination country.8,9

To reinforce our argument, we add the assumption that the income to be obtained
in the destination country is high enough (namely α > α0) so that if the co-saving
agreement is annulled after the winner of the draw migrates, the cheated loser of the
draw will still find it attractive to save for migration, starting to do so all over again
from scratch (at the maximum rate of 1 per month), but this time without seeking

6The parking of the savings with a trusted third party assures the winner of the draw that once realizing
the outcome of the draw, the loser of the draw will not be able to opt out with all his savings intact, which
would have been possible had he kept his savings for himself.
7This mechanism of joint saving resembles a ROSCA (Rotating Savings and Credit Association); consult
Geertz (1962), Ardener (1964), and Besley et al. (1993).
8In Lemmas M3 through M5 in the Mathematical Addendum we show that these saving rates maximize
the expected utilities of the individuals who save jointly.
9In the scheme described in this paragraph, the winner of the draw will contribute more to the common
pot of savings than the loser of the draw. However, in terms of the sacrifice that each of the two individuals
makes rather than in terms of the financial contributions that each of the individuals makes, such a saving
program is fair.
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to strike a new co-saving agreement with yet another individual (“once bitten, twice
shy”).10

In a population of would-be migrants which is of finite discrete size N that is
not too small, we next characterize and measure the risk involved in a time-phased
co-saving agreement and the link between this risk, the cost of migration, and the
propensity to enter a two-person co-saving agreement aimed at facilitating migration.
We relate the severity of the risk to the distance in social space. To quantify the
risk, we characterize the proximity in social space between a pair of any would-be
migrants by a single number between zero and one, which measures the personal
bond between the individuals. Thus, for individual j (j = 1,2, . . . ,N ), the values
of the levels of the affinity towards individuals i = 1,2, . . . ,N are given by a
sequence P j = (p

j

1 ,p
j

2 , . . . , p
j

N), where 0 ≤ p
j

i ≤ 1 for i = 1,2, . . . ,N .11 In terms
of the p

j

i values, we can think of individual j as if he were positioned at some
point, surrounded by a sequence of circles of increasing radii, such that a radius is
inversely proportional to p

j

i . Naturally, members of individual j ’s closest family will
be characterized by the highest p

j

i ’s, thus occupying the most inner circle, members
of the extended family of j by somewhat lower p

j

i ’s, thus occupy the next, wider
circle, friends of individual j by lower still p

j

i ’s, occupying the third outward circle,
and so on. Taking affinity to be mutual, we assume symmetry in the p

j

i values, that is,
p

j

i = pi
j
. To map the affinity values onto the risk involved in a co-saving agreement,

we assume that the probability that individual j assigns to the likelihood of individual
i honoring the agreement after individual i emerges as the winner of the random draw
of who will be the first to migrate - a probability that we term the trust parameter
between j and i - is p

j

i .12

We now assemble the building blocks needed to construct the expected utility
function of an honest individual j (that is, of an individual who is planning to keep
his part of the agreement if he emerges as the winner of the draw), who co-saves with
individual i.

First, individual j has a 50 percent chance of winning the draw, in which case
he departs after TW = C/ 2 months (where subscript W stands for winner). This
individual sends back the maximum available amount of α per month which, when
combined with the savings of the individual who stayed behind (1 per month), allows

the latter to take the migration journey after an additional
1

1 + α
C months, namely

10That a cheated would-be migrant will next time go it alone could be reasoned in yet another way, namely
from the “supply side” rather than from the “demand side,” as follows. An individual who was cheated is
likely to have a stronger temptation to make up for the lost time by cheating a co-saver should he have one.
Illuminating evidence is provided by Houser et al. (2012) to the effect that an individual who was treated
unfairly in one encounter is more likely to cheat in a subsequent encounter with another person. Alempaki
et al. (2019) present intriguing findings in a similar vein. Assuming that other would-be migrants are aware
of the fact that an individual was cheated (and that he is likely to be vengeful), they will be reluctant to
enter a co-saving agreement with him. Thus, it will be hard for a cheated individual to find a co-saver.
11For sake of notational consistency, the affinity of individual j “towards himself” is p

j
j = 1.

12There is an obvious variability in the likelihood of reneging caused by variability in the degree of social
connectedness among co-savers. We do not need to include other contributing factors to that variability,
even though, if such factors were to be added, that could accentuate it (operate in the same direction) as
does social distance. In a laboratory experiment, Hermann and Ostermaier (2018) find that a reduction of
social distance is likely to promote honesty in social interactions.
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TL = 1

2
C + 1

1 + α
C = 3 + α

2(1 + α)
C months after striking the co-saving agreement.

(The subscript L stands for loser.) From then on, the two individuals can enjoy
spending their income in the destination country as they please. Such a realization
of the arrangement yields utility to an honest individual of

UH

W
=

TW∫
0

e−δtu(0)dt +
TL∫
TW

e−δtu(0)dt +
T∫

TL

e−δtu(α)dt

=
TL∫
0

e−δtu(0)dt +
T∫

TL

e−δtu(α)dt,

(2)

where UH
W

stands for the utility of an honest winner. (The superscript H stands for
honest.)

Second, individual j has a 50 percent chance of losing the draw, in which case
his utility will depend on the behavior of the winner of the draw who, we recall, is
assumed to fulfill the agreement with probability p

j

i . If individual i does not renege,
the utility of individual j will be

UL =
TW∫
0

e−δtu(0)dt +
TL∫
TW

e−δtu(0)dt +
T∫

TL

e−δtu(α)dt

=
TL∫
0

e−δtu(0)dt +
T∫

TL

e−δtu(α)dt = UH

W
,

(3)

where UL stands for the utility of a loser of the draw whose co-saver is honest.
Third, with probability 1 − p

j

i individual i reneges, in which case individual j ’s
utility is

UCh =
TW∫
0

e−δtu(0)dt +
TCh∫
TW

e−δtu(0)dt +
T∫

TCh

e−δtu(α)dt

=
TCh∫
0

e−δtu(0)dt +
T∫

TCh

e−δtu(α)dt,

(4)

where UCh stands for the utility of a loser of the draw whose co-saver behaves
dishonestly, and where TCh = C/ 2 + C = 3C/ 2 is the point in time at which the
cheated individual can take the journey after saving alone from scratch. (The subscript
Ch stands for cheated.)13

13We assume that the winner of the draw either reneges, failing to remit from the moment he arrives at the
destination country (because his gain from reneging is then at its highest), or that he sticks to the agreement
all the way up to the migration of the loser of the draw.
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Joining together the preceding three building blocks, the expected utility of an
honest would-be migrant j is

EUH = 1

2
UH

W
+ 1

2

[
p

j

i UL + (
1 − p

j

i

)
UCh

] = 1 + p
j

i

2
UH

W
+ 1 − p

j

i

2
UCh, (5)

where the third part of (5) follows from the middle part of (5) because from (2)
and (3), UL = UH

W
.

In an analogous manner, we formulate the expected utility of a “dishonest”
would-be migrant j from striking a co-saving agreement with individual i, which
is

EUD = 1

2
UD

W
+ 1

2

[
p

j

i UL + (
1 − p

j

i

)
UCh

]
(6)

(the superscript D stands for dishonest), and where

UD

W
=

TW∫
0

e−δtu(0)dt +
T∫

TW

e−δtu(α)dt

is the utility of a dishonest winner, namely the utility of an individual who wins the
draw, uses the savings of his co-saver to reach the destination country soonest (after
TW = C/ 2 months), and thereafter keeps for himself the higher income that he gets
there.

To assess the inclination of individual j to enter a co-saving agreement, we look
at the difference between the expected utility from co-saving (this utility is measured
by EUH , the expected utility of an honest would-be migrant, as given by (5)) and the
utility from saving alone (this utility is UA as given in (1)). We express this difference
as a function of the trust parameter, p

j

i , and of the cost of migration, C:

�U(p
j

i ,C) = EUH (p
j

i ,C) − UA(C). (7)

It turns out that for a given pair (pj

i ,C), the sign of �U(p
j

i ,C) determines whether
individual j , no matter if honest or not, will strike a co-saving agreement with
individual i: if �U(p

j

i ,C) > 0, then individual j will strike an agreement, whereas
if �U(p

j

i ,C) < 0, he will save alone. For an honest individual j , the reasoning
is trivial. For a dishonest individual j , we have that EUD(p

j

i ,C) > EUH (p
j

i ,C)

for any p
j

i and C; therefore, EUD(p
j

i ,C) > UA(C) whenever �U(p
j

i ,C) > 0.

Additionally, there exists a range of p
j

i for which EUD(p
j

i ,C) > UA(C) even though
�U(p

j

i ,C) < 0. However, the willingness of individual j to strike a co-saving
agreement with individual i when �U(p

j

i ,C) < 0 constitutes a signal of bad
(dishonest) intentions of individual j . Therefore, noting that as a measure of mutual
affinity p

j

i is known to both individual i and individual j , rational individuals (honest
and dishonest alike) will not be keen to form co-saving agreements for a p

j

i for which
�U(p

j

i ,C) < 0.
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3. An increase in the cost of migration and the evolving propensity
to form joint saving agreements

To determine the relationship between the propensity to strike a co-saving agreement
and the cost of migration, we inquire how a marginal increase in this cost influences
the range of the levels of p

j

i that render co-saving agreements desirable, namely
that result in �U(p

j

i ,C) > 0. To this end, we treat the p
j

i in (7) as a continuous
variable, and we refer to this variable as p. We denote by p0(C) the critical level of
the trust parameter, expressed as a function of the cost of migration, such that for
any p > p0(C) it holds that �U(p,C) > 0. We can then formulate and prove the
following proposition.

Proposition 1. Let the initial cost of migration be C1. Assuming that a marginal
increase in the cost of migration from C1 does not overturn the decision to migrate,
the critical level of the trust parameter p0(C) is a non-increasing function of C in
the neighborhood of C1. Moreover, if �U(0,C1) < 0, then p0(C) is a decreasing
function of C in the neighborhood of C1.

Proof. Looking at the middle part of (5), we note that (because, obviously, UL > UCh)
the derivative of EUH with respect to p

j

i is strictly positive and, thus, so is the
derivative of �U(p,C) (as per (7)) with respect to p for any C. On comparing (2)
and (1), we see that �U(1,C) = UH

W
(C) − UA(C) > 0 for any C. Because the sign

of �U(0,C1) = 1

2
UH

W
(C1) + 1

2
UCh(C1) − UA(C1) can be any, there are two cases to

consider.
When �U(0,C1) > 0, an individual is willing to cooperate with any individual

regardless of that individual’s level of trust. A (marginal) increase of the cost from
C1 does not interfere with this inclination, namely in the neighborhood of C1, p0(C)

is a non-increasing function of C.
When �U(0,C1) < 0, p0(C) in the neighborhood of C1 can be characterized as

the level at which �U(p0(C),C) = 0, that is,

p0(C) = 2UA(C) − UH
W (C) − UCh(C)

UH
W (C) − UCh(C)

,

which, on taking the integrals in the expressions UA(C) (as per (1)), UH
W

(C) (as
per (2)), and UCh(C) (as per (4)), and on performing several algebraic steps, yields

p0(C) = 1 −
2
[
1 − e− (α−1)

2(1+α)
δC

]
1 − e− α

1+α
δC

.

Taking the derivative of this expression of p0(C) with respect to C and evaluating the
derivative at C1 yields

p′
0(C) = − δe

δC1
2

[
1 + α + (α − 1)e

α
1+α

δC1 − 2αe
α−1

2(1+α)
δC1

]

(1 + α)
(
e

α
1+α

δC1 − 1
)2 . (8)
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Because

− δe
δC1

2

(1 + α)
(
e

α
1+α

δC1 − 1
)2 < 0,

we will be able to determine the sign of (8) once the sign of the term inside the square
brackets in (8) is known. We denote this term by

R(α,C1, δ) = 1 + α + (α − 1)e
α

1+α
δC1 − 2αe

α−1
2(1+α)

δC1 .

Let z = δC1 > 0, and let S(α, z) ≡ 1 + α + (α − 1)e
α

1+α
z − 2αe

α−1
2(1+α)

z. Then

∀
α>1

lim
z→0

S(α, z) = 0, (9)

and

∀
α>1,z>0

∂S(α, z)

∂z
= (α − 1)αe

α−1
2(1+α)

z

(
e

z
2 − 1

)
1 + α

> 0. (10)

From (9) and (10) it follows that the function S(α, z) is positive for every α > 1 and
z > 0, and that the function R(α,C1, δ) is positive for every α > 1, δ > 0, and C1 > 0.
Therefore,

p′
0(C1) = − δe

δC1
2 R(α,C1, δ)

(1 + α)
(
e

α
1+α

δC1 − 1
)2 < 0,

for every α > 1, δ > 0, and C1 > 0, which leads us to conclude that in the
neighborhood of C1, p0(C) is a decreasing function of C. Q.E.D.

Proposition 1 implies that after the cost of migration increases (but not by enough
to overturn the decision to migrate),14 a would-be migrant will be in favor of entering
a co-saving agreement with another would-be migrant who is farther away in social
space (positioned at a farther out trust circle). If so, then as the cost becomes higher,
more individuals will be predisposed to enter co-saving agreements to facilitate their
migration.

At first sight, the lesser stringent stance described might appear counterintuitive:
after all, as the cost of migration increases, the financial penalty incurred when a
co-saver fails to keep his side of the agreement is heavier. However, as the cost
of migration increases, the gain from co-saving can outweigh the possible loss:
because individuals discount future consumption (δ > 0), a gain realized earlier due
to co-saving can overshadow the possible pain to be sustained in the more distant
future.

14The increase in the cost of migration will not overturn the decision to migrate as long as following the

increase in the cost of migration, the inequality α >
eδT − 1

eδ(T −3C/2) − 1
continues to hold.
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We have implicitly assumed that the increase in the cost of migration does not
imply or invite re-evaluation of the trust parameters that an individual attributes to
his potential co-savers. Namely individual j , who accords a trust parameter p

j

i to
individual i when the cost of migration is C1, will keep this evaluation of i when the
cost increases to C2; the longer period of amassing the required funds in the case of
increased cost of migration will not render a given co-saver riskier. A reason for that
is that when an individual selects a co-saver, the individual bases his choice on an
established bond (mutual affinity in social space), not on a characteristic of a passing
event (the prevailing cost of migration). Thus, individual j need not formulate his
assessment of the likelihood of a potential co-saver sticking in the future to a deal as
a function of the associated amount; he bases the assessment on the circle in social
space occupied by the candidate co-saver.

Drawing on Proposition 1, we next show that following an increase in the cost of
migration, there is a time window during which the intensity of migration will not be
lower when the cost of migration is higher.

Proposition 2. Let there be a marginal increase in the cost of migration from C1

to C2 such that this increase does not overturn the decision to migrate, and such

that C2 <
3 + α

1 + α
C1. Then, in the course of time span T = [0,C2 / 2], the intensity

of migration under cost C2 will not be lower than the intensity of migration under
cost C1.

Proof. Under cost C1, co-saving agreements will be formed among individuals with
a trust parameter of at least p0(C1). Let there be N1 such individuals. The manner of
the selection of individuals into pairs notwithstanding, let the number of pairs formed
when the cost is C1 be M1. Then, there will be M1 / 2 individuals (winners of the draws
in co-saving pairings), each of whom migrates after T 1

W
= C1 / 2 months.

Let the cost of migration increase from C1 to C2, where the increase does not
overturn the decision to migrate. Drawing on Proposition 1, then under cost C2

co-saving agreements will be formed among N2 individuals with a trust parameter
of at least p0(C2) ≤ p0(C1). Therefore, N2 ≥ N1. Under any plausible manner of the
selection of individuals into pairs, the number of pairs M2 formed among N2 ≥ N1

individuals under cost C2 will not be lower than under cost C1: M2 ≥ M1. Then, after
T 2

W
= C2 / 2 months, M2 / 2 ≥ M1 / 2 individuals will migrate. Additionally, the losers

of the draws in co-saving pairs formed under cost C1 will migrate at the earliest

after T 1
L

= 3 + α

2(1 + α)
C1 > T 2

W
months, which follows from the assumption of the

proposition that C2 <
3 + α

1 + α
C1. Thus, during time span T = [0,C2 / 2], the intensity

of migration under cost C2 will not be lower than the intensity of migration under
cost C1. Q.E.D.

4. Examples of empirical implications

Our model gives rise to implications that can be tested. By way of illustration, we list
two.
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First, suppose that there are two communities: a tightly-knit community A,
and community B where social links between members are loose; it is not
difficult to imagine that communities can and do differ in their “trust capital” or
“social bonds capital.” To begin with, we will observe an earlier participation in
migration in community A than in community B. The reason is that individuals in
community A are more likely to enter migration-facilitating joint saving agreements
than individuals in community B. However, as Proposition 1 reveals, when the cost of
migration increases, we can expect that individuals in community B will find entering
joint saving agreements to expedite migration more attractive than continuing to save
alone. Then, an increase in the cost of migration could narrow the difference in the
timing of migration between communities that are dissimilar in terms of their “social
bonds capital.”

Second, we have in place a cost-based explanation for the emergence of co-saving
agreements: high costs invite increased collaboration which, in turn and inter alia,
assumes the form of established migrants subsidizing / supporting the migration of
other members of their home community. Other things held constant, the higher the
cost of migration, the higher the prevalence of co-saving, and the higher the incidence
of subsidization / remittances. An intriguing testable prediction is that remittances to
a community which responds to a rising cost of migration by higher incidence of
co-saving will be higher when the cost of migration increases.

5. Discussion and conclusions

We have studied how financial cooperation between would-be migrants could
accelerate costly journeys to a country where incomes higher than at origin can be
enjoyed. The mutual financing of the cost of migration allows would-be migrants
to avoid the need to take out expensive loans from loan sharks or pawn-brokers (if
loan-taking is at all possible), or become a prey to smuggling organizations and
traffickers.15 We have shown that when the risk involved in entering a co-saving
agreement is taken into account, the propensity to enter an agreement depends
positively on the cost of migration. An increase in this cost may not be followed by a
slow-down in migration. And a possible intensification of migration is not caused by
the expectation of an even higher cost in the future, but rather by a shift of the line of
demarcation between the set of lone savers and the set of joint savers in favor of the
latter.

In the analysis undertaken in this paper we have (implicitly) assumed that in terms
of productivity and chances of finding employment at destination, the individuals
who contemplate migrating are homogenous. Seemingly, in an “asymmetrical”
environment with relatively low-skilled would-be migrants and relatively high-skilled
would-be migrants, if mixed pairs were to form, a rational choice would be to
forfeit the random selection of the first-to-go migrant and instead to let the relatively
high-skilled individual migrate first. However, this is only “apparently” so because

15According to Djajić and Vinogradova (2014), the interest rate on a loan a migrant takes from smuggling
organizations can reach 60 percent per annum.
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when skills heterogeneity is introduced, there is a good chance that a high-skilled
individual will gain little by pooling his savings with a low-skilled individual.
Consequently, we can expect a pairing of similar-by-skill would-be migrants, with the
random draw process retained. If matching by skill type is not possible and a mixed
match is considered better than no match then, because it is likely that the random
selection of the first-to-go will be replaced by an agreement that the high-skilled
individual will leave first, the entire ex ante risk involved in striking the joint financing
agreement will be borne by the low-skilled individual. If the affinity of this individual
to the high-skilled individual is close enough, then the risk taken might not be too
high to negate the appeal of an asymmetrical pairing.

In our analysis, we have based our definition of the “trust parameter” between
the would-be migrants on the concepts of proximity in social space and affinity.
A possible alternative perspective, under which our main result will hold, is to base
the evaluation of the trustworthiness of a potential co-saver on the latter’s known
and well-established record. An example borrowed from the US financial scene
can be used to illustrate. In the US, the best possible credit (FICO) score is 850.
Superimposing the US setting on our migration scenario, suppose that when the cost
of migration is low, individual j might prefer to save alone rather than to save together
with another individual because that individual’s score is 700, which measured as a
ratio of 850 is 0.82. Nor will individual j want to co-save with yet another potential
co-saver whose credit score is 600, which measured as a ratio is 0.71. These measures,
which are based on past record and a history of honoring financial commitments,
serve as individual j ’s “yardsticks.” When the cost of migration increases, individual
j gives a second consideration to co-saving with someone else; and when the cost
is becoming higher still, individual j might even consider co-saving with the “0.71
individual.” The numbers 850/850 = 1, 700/850 = 0.82, and 600/850 = 0.71 serve as
probabilities that an individual will be a trustworthy collaborator in a pending saving
scheme.

We have analyzed the difference between joint saving and lone saving under
the assumption that joint saving is undertaken by two individuals. We took this
track because we were of the opinion that this comparison nicely encapsulates
the advantages and disadvantages of joint saving as opposed to lone saving, and
because doing so was analytically manageable. A question could nonetheless be
raised whether the qualitative conclusions drawn from that comparison will hold if
more than two individuals were to team up to co-save: will not co-saving by, say,
three individuals expedite migration by more than co-saving by two individuals? In
response, we note that an increase in the number of co-savers is not an ideal means
to expediting the accumulation of funds needed to facilitate migration. In Stark and
Jakubek (2013) we studied the optimal size of a joint saving scheme in the context
of the formation of a migration network, and we showed that this size is limited:
even though adding another individual to the scheme can expedite the migration of
co-savers, it is also the case that enlargement of the group of co-savers involves
recruitment of people who are farther away in social space. Thus, for a given cost
of migration, the risk involved in a bigger saving scheme can fast overshadow the
potential gain from speeding-up migration. Under what conditions individuals will be
willing to bear the associated increased risk when the cost of migration is increasing
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calls for a full-scale analysis of the optimal number of co-savers as a function of the
cost of migration, an intriguing subject for future inquiry.
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Mathematical Addendum

In this Addendum we show that the saving rates presented in the main text of the
paper are the solutions of utility maximization problems of, respectively, a single
individual who saves alone, and of two individuals who save jointly, and we provide
strict conditions regarding the relationship between the parameters of the model
(C, T , α, and δ) which render migration a viable option under the alternative schemes
of saving.

Case 1: Saving alone

Consider an individual who at the beginning of month t = 0 elects to save alone
in order to finance his migration. To concentrate on essentials, we assume that in
each month the individual saves a constant amount out of his spare income, say
an amount s(t) ≡ sA. In order to meet the cost of migration, C, saving at this rate
requires TA(sA) ≡ C/ sA months of saving, where subscript A stands for alone. We
normalize at 1 the maximum monthly amount available to a single individual for
saving after covering the essential costs of living. To render migration possible, we
assume throughout that C < 2T / 3. Because the period of saving cannot possibly
be longer than the length of a working life, we have that sA ∈ [

C/T ,1
]
. Thus, the

lifetime utility of an individual who saves alone at the rate of sA per month and then
migrates is

UA(sA) ≡
TA(sA)∫

0

e−δtu(1 − sA)dt +
T∫

TA(sA)

e−δtu(α)dt,

where u(·) is defined in Section 2 of the main text of the paper. We denote by s∗
A

the
saving rate that maximizes UA(sA).

To derive a condition that renders migration a viable option for an individual who
saves alone, we denote by UH the utility of an individual who spends his entire
working life in his home country,

UH ≡
T∫
0

e−δtu(1)dt. (M1)

In the following lemma we present a requirement that needs to be fulfilled regarding
a constellation of the parameters C, T , α, and δ that render migration a viable option
for an individual who saves alone. We formulate the requirement as a condition on
the parameter α because in the subsequent analysis this formulation will be the most
straightforward one to use.
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LemmaM1. If

α >
eδT − 1

eδ(T −3C/2) − 1
≡ α0, (M2)

then there exists sA ∈ [
C/T ,1

]
such that UA(sA) > UH ; that is, it is desirable for an

individual to choose to save alone and migrate, rather than to spend his working life
in his home country.

Proof. Let sA = 1. Then, the lifetime utility of an individual who saves the amount of
1 per month in order to be able to migrate is

UA(1) = 1

δ

(
1 − e−δC

)+ 1 + α

δ

(
e−δC − e−δT

)
.

The requirement that migration after saving at the rate sA = 1 is a gainful option for
an individual is equivalent to the condition UA(1) − UH > 0. We have that

UA(1) − UH = 1

δ

(
1 − e−δC

)+ 1 + α

δ

(
e−δC − e−δT

)− 2

δ

(
1 − e−δT

)

= 1

δ

[
αe−δC − (

α − 1
)
e−δT − 1

]
>

1

δ

[
αe−3δC/2 − (

α − 1
)
e−δT − 1

]
,

(M3)

from which it follows that UA(1) − UH > 0 if
1

δ

[
αe−3δC/ 2 − (

α − 1
)
e−δT − 1

]
> 0,

and for which to hold it is sufficient that

α >
eδT − 1

eδ(T −3C/2) − 1
.

Q.E.D.

Comment: from (M3) it is seen that the condition (M2) on α is sufficient, but
not necessary, for migration to constitute a viable option for a single individual. (In
a similar vein, in the case of a single individual, the requirement that C < 2T / 3 is
sufficient, but not necessary.) However, as will be clarified in Lemma M4 below,
conditions (M2) and C < 2T / 3 are sufficient also for an individual who was cheated
in a co-saving agreement to find it desirable to start saving alone from scratch. Thus,
in order not to introduce assumptions superfluously, throughout our analysis we have
chosen (M2) as the single assumption on α, and C < 2T / 3 as the single assumption
on C.

In the next lemma we derive the optimal saving rate of a single individual who on
his own accumulates the funds that are needed to facilitate the migration journey.

LemmaM2. If condition (M2) is met, then an optimizing individual chooses a saving
rate that is equal to his spare income, namely s∗

A
= 1.

Proof. We consider the following maximization problem:

max
sA∈[C/T ,1]

{
UA(sA)

} = max
sA∈[C/T ,1]

{
2 − sA

δ

(
1 − e− δC

sA

)
+ 1 + α

δ

(
e− δC

sA − e−δT

)}
,
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assuming that α > α0 (defined in (M2)). Differentiating this objective function with
respect to sA yields

U ′
A
(sA) = e− δC

sA

[
s2
A

(
1 − e

δC
sA

)
+ δC

(
α + sA − 1

)]
δs2

A

. (M4)

Because sA, δ,C > 0, the sign of U ′
A
(sA) is the same as the sign of the expression in

square brackets in (M4). We denote F(sA,α, δ,C) ≡ s2
A

(
1 − e

δC
sA

)
+ δC

(
α + sA − 1

)
.

First, we note that

∂F

∂α
(sA,α, δ,C) = δC > 0. (M5)

In addition,

F(1, α, δ,C) = 1 − eδC + αδC.

Using (M5) and (M2), we get that

F(1, α, δ,C) > F(1, α0, δ,C).

Treating α0 in (M2) as a function of T , we get that

α′
0(T ) = −eδ(T +C)

(
eδC − 1

)
δ(

eδT − eδC
)2 < 0,

and that

lim
T →∞

α0(T ) = eδC ≡ α∞.

Using (M5), we get that

dF(1, α0(T ), δ,C)

dT
= α′

0(T )
∂F

∂α
(1, α0(T ), δ,C) < 0,

and, thus,

F(1, α0, δ,C) > lim
T →∞

F(1, α0(T ), δ,C) = F(1, α∞, δ,C)

= eδC
[
e−δC + δC − 1

]
> 0,

where the inequality in this last expression is due to the property that for any x > 0,
e−x + x − 1 > 0. Thus,

0 < F(1, α∞, δ,C) < F(1, α0, δ,C) < F(1, α, δ,C) (M6)

for any 0 < C < T , δ > 0, and α > α0, which yields U ′
A
(1) > 0. Additionally,

∂2F

∂s2
A

(sA,α, δ,C) = 2 + e
δC
sA

[
δC

(
2sA − δC

)
s2
A

− 2

]
≡ f (sA,C, δ).
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Because

∂f

∂δ
(sA,C, δ) = −δ2C3e

δC
sA

s3
A

< 0,

we get that f (sA,C, δ) < lim
δ→0

f (sA,C, δ) = 0 and, therefore,
∂2F

∂s2
A

(sA,α, δ,C) < 0.

Consequently, because with respect to sA ∈ [C/T ,1] the function F(·) is concave
and for sA = 1 its value is positive (consult (M6)), this function can cross zero at
most once for sA ∈ [C/T ,1]. We denote by s0(α, δ,C) a point on [C/T ,1] at which
F(s0, α, δ,C) = 0 for given α, δ, and C. Because the sign of F(·) is the same as the
sign of U ′

A(·), there are two possibilities.

(i) Such s0(α, δ,C) does not exist in the interval [C/T ,1] and, thus,
F(sA,α, δ,C) > 0 in the entire interval [C/T ,1], which is equivalent to UA(sA)

constituting an increasing function up to sA = 1.
(ii) Such s0(α, δ,C) ∈ [C/T ,1] exists, in which case the function UA(sA) is

decreasing in the interval
[
C/T , s0(α, δ,C)

)
, with sA = C/T being a local

(border) maximum, and increasing on
(
s0(α, δ,C),1

]
, with sA = 1 being another

border maximum. However,

UA(C/T ) =
T∫
0

e−δtu(2 − C/T )dt <

T∫
0

e−δtu(2)dt = UH , and from the proof of

Lemma M1 and condition (M2) it follows that UA(1) > UH . Consequently,
UA(C/T ) < UA(1).

Pooling together (i) and (ii), we conclude that s∗
A

= 1 is a global maximum. Q.E.D.

In sum, the optimal duration of saving of a single individual is
TA ≡ TA(s∗

A
) = C/ s∗

A
= C. The corresponding maximum lifetime utility is

UA ≡ UA(1) =
TA∫
0

e−δtu(0)dt +
T∫

TA

e−δtu(α)dt, (M7)

which is the same as expression (1) presented in the main text of the paper.

Case 2: Saving jointly

We first analyze a joint saving agreement under the assumption of complete
compliance, that is, an agreement where the risk of reneging is not taken into
consideration, which is equivalent to setting the affinity level p

j

i at 1. Once we
derive the optimal saving rates in a complete-compliance agreement, we will show
that allowing p

j

i < 1 will not affect the solutions of the corresponding utility
maximization problems.

The individuals who save jointly choose three optimal saving rates in order to
maximize their lifetime utility. Initially, when the individuals are in their home
country, then until the draw determines who will be the first to migrate, they are
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indistinguishable. We therefore assume that each of them saves at the common rate
0 ≤ sH1 ≤ 1, accumulating together the amount of 2sH1 per month. Following the
draw and the migration of one of the individuals, the individuals can potentially save
at different rates. We therefore denote by sD ∈ [0, α] the saving rate of the individual
who is already in the destination country, and by sH2 ∈ [0,1] the saving rate of the
individual who is still in the home country.

Under a complete-compliance agreement, the only random event is the one in
which it is determined who will be the winner of the draw. The winner will be able

to take the migration journey after TW(sH1) ≡ C

2sH1

months, whereas the loser of the

draw will be able to migrate after an additional period of
C

sD + sH2

months; that is, at

the point in time TL(sH1, sH2, sD) ≡ C

2sH1

+ C

sD + sH2

. Thus, the expected utility of an

individual entering a complete-compliance, two-person joint saving scheme is

EUCC(sH1, sH2, sD) ≡ 1

2
UW(sH1, sH2, sD) + 1

2
UL(sH1, sH2, sD), (M8)

where subscript CC stands for complete-compliance, and where

UW(sH1, sH2, sD) ≡
TW (sH1)∫

0

e−δtu
(
1 − sH1

)
dt +

TL(sH1,sH2,sD)∫
TW (sH1)

e−δtu
(
α − sD

)
dt

+
T∫

TL(sH1,sH2,sD)

e−δtu(α)dt

(M9)

and

UL(sH1, sH2, sD) ≡
TW (sH1)∫

0

e−δtu
(
1 − sH1

)
dt +

TL(sH1,sH2,sD)∫
TW (sH1)

e−δtu
(
1 − sH2

)
dt

+
T∫

TL(sH1,sH2,sD)

e−δtu(α)dt

(M10)

are, respectively, the lifetime utility of the winner of the draw, and the lifetime utility
of the loser of the draw.

In the following lemma we specify the saving rates that maximize
EUCC(sH1, sH2, sD), which we correspondingly denote by s∗

H1, s∗
H2, and s∗

D
.

Lemma M3. Assuming that condition (M2) is met, the two individuals who are
optimizing EUCC(sH1, sH2, sD) will choose rates of saving that amount to their entire
spare incomes, that is, s∗

H1 = s∗
H2 = 1, s∗

D
= α.
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Proof. We consider the following maximization problem:

max
sH1,sH2,sD

{
EUCC(sH1, sH2, sD)

}
s.t. 0 ≤ sH1, sH2 ≤ 1,0 ≤ sD ≤ α,

C

2sH1

+ C

sH2 + sD

≤ T .

(M11)

The first two constraints in (M11) express the assumption that savings cannot be
higher than the corresponding spare incomes. The third constraint in (M11) means
that the time needed to accumulate the funds required to cover the costs of migration
by the two individuals cannot be longer than the working life of each of them.16

In order to show that the global maximum of problem (M11) is obtained
for s∗

H1 = s∗
H2 = 1 and s∗

D
= α, we will proceed as follows. First, without loss

of generality, we will rewrite problem (M11) so that the objective function
EUCC(sH1, sH2, sD) will be replaced by a simpler function of two variables,
EU(sHH, sHD). Then, in Supportive Lemmas M1 and M2 we will derive properties
of the derivatives of EU(sHH, sHD) with respect to sHH and sHD. These properties will
allow us to identify the maximum of EU(sHH, sHD) and, consequently, the maximum
of EUCC(sH1, sH2, sD).

By combining (M8), (M9), and (M10) we obtain

EUCC(sH1, sH2, sD) = 1

2

C
2sH1∫
0

e−δt
(
4 − 2sH1

)
dt

+ 1

2

C
2sH1

+ C
sH2+sD∫

C
2sH1

e−δt
(
3 + α − sH2 − sD

)
dt

+ 1

2

T∫
C

2sH1
+ C

sH2+sD

e−δt2(1 + α)dt.

We simplify the maximization problem in (M11) by merging the two saving amounts
sH2 and sD into one variable, sHD ≡ sH2 + sD , and we denote sHH ≡ 2sH1. Because we
will show that the solution of the problem defined in (M12) below is to set sHD as
high as possible, it follows that this solution translates to a well-defined solution of
(M11) with respect to sH2 and sD ; both amounts will have to be set at their upper
limits. Namely

max
sHH ,sHD

{
EU(sHH, sHD)

}
s.t. 0 < sHH ≤ 2,0 < sHD ≤ 1 + α,

(M12)

16We do not contemplate a possibility that, for example, the migrant who turned out to be the second to
go decides not to migrate but stay in the home country and boost his consumption by spending there the
funds sent by the first migrant; the saving scheme is aimed at expediting the migration of both individuals.
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where

EU(sHH, sHD) ≡ 1

2

⎡
⎣

C/sHH∫
0

e−δt
(
4 − sHH

)
dt

+
C/sHH+C/sHD∫

C/sHH

e−δt
(
3 + α − sHD

)
dt +

T∫
C/sHH+C/sHD

e−δt2(1 + α)dt

⎤
⎦ ,

and, thus, EUCC(sH1, sH2, sD) = EU(2sH1, sH2 + sD).
Compared to (M11), in (M12) we changed the permitted ranges of the variables to

strict inequalities with respect to zero, and we have done so because this is necessary
for the third condition in (M11) to hold. However, for the sake of simplifying the
analysis that follows, in (M12) we omit this condition; at the end of the proof of
Supportive Lemma M3 below we show that, nonetheless, this condition is satisfied in
the solution of problem (M12). In what follows, we assume that α satisfies condition
(M2).

We next draw on a property of the derivative of EU(·) with respect to sHH that
is similar to the property found for U ′

A
(·) in the proof of Lemma M2. That is, we

first show that
∂EU

∂sHH

(sHH, sHD) is positive for the border value of sHH = 2, and that

it can cross zero at most once in the range sHH ∈ (0,2). Therefore, in the search
for maxima, we can concentrate on the borders where sHH = 2 and where sHH → 0.

With regard to the border sHH = 2,
∂EU

∂sHD

(2, sHD) is positive for sHD = 1 + α, and

it can cross zero at most once for sHD ∈ (0,1 + α) and, thus, either a maximum
is obtained for (sHH, sHD) = (2,1 + α), or for sHD → 0 the function EU(·) grows
beyond EU(2,1 + α). With regard to the border sHH → 0, we get that the function
lim
sHH →0

EU(sHH, sHD) is constant with respect to sHD and, therefore, all that remains

in order to resolve existence and pinpoint the global maximum of EU(·) on the
set (sHH, sHD) = (0,2] × (0,1 + α] is to compare the values of EU(2,1 + α),
lim
sHD→0

EU(2, sHD), and lim
sHH →0

EU(sHH, sHD). We note that

∂EU

∂sHH

(sHH, sHD)

= e− δC(sHH +sHD)
sHH sHD

{
δC

[
α + sHD − 1 + e

δC
sHD

(
α + sHH − sHD − 1

)]+ e
δC
sHD

(
1 − e

δC
sHH

)
s2

HH

}
2δs2

HH

.

(M13)

We further note that the sign of
∂EU

∂sHH

(sHH, sHD) for sHH ∈ (0,2] and for sHD ∈ (0,1+α]
is the same as that of the expression inside the curly brackets in (M13), which we
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denote by

G(sHH, sHD, α, δ,C) ≡ δC

[
α + sHD − 1 + e

δC
sHD

(
α + sHH − sHD − 1

)]

+ e
δC
sHD

(
1 − e

δC
sHH

)
s2

HH.

In the following supportive lemma we present two properties of the G(·)
function.

Supportive Lemma M1. G(sHH, sHD, α, δ,C) is a concave function with respect
to sHH ∈ (0,2] for every sHD ∈ (0,1 + α], and G(2, sHD, α, δ,C) > 0 for every
sHD ∈ (0,1 + α].

Proof. We first deal with the concavity property. We note that

∂2G

∂s2
HH

(sHH, sHD, α, δ,C) = e
δC
sHD

[
2s2

HH − e
δC
sHH

(
δ2C2 − 2δCsHH + 2s2

HH

)]
s2

HH

. (M14)

Denoting the expression in square brackets in (M14), which determines the sign of
∂2G

∂s2
HH

(sHH, sHD, α, δ,C), by

g(sHH, α, δ,C) ≡ 2s2
HH − e

δC
sHH

(
δ2C2 − 2δCsHH + 2s2

HH

)
,

we obtain

∂g

∂δ
(sHH, α, δ,C) = −δ2C3e

δC
sHH

sHH

< 0.

Thus, for δ > 0, we get that

g(sHH, α, δ,C) < lim
δ→0

g(sHH, α, δ,C) = 0,

from which we get that
∂2G

∂s2
HH

(sHH, sHD, α, δ,C) < 0.

To determine the sign of G(2, sHD, α, δ,C), we note that

G(2, sHD, α, δ,C) = e
δC
sHD

[
4 + δC

(
1 + α − sHD

)]+ δC
(
α + sHD − 1

)− 4e
δC
sHD

+ 1
2 ,

from which we obtain

∂G

∂α
(2, sHD, α, δ,C) = δC

(
1 + e

δC
sHD

)
> 0,

so that, consequently, for α > α0 (as defined in (M2)) it follows that

G(2, sHD, α, δ,C) > G(2, sHD, α0, δ,C). (M15)
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Treating α0 in (M2) as a function of T , we get that

α′
0(T ) = −eδ(T +C)

(
eδC − 1

)
δ(

eδT − eδC
)2 < 0, (M16)

that

lim
T →∞

α0(T ) = eδC ≡ α∞, (M17)

and that

dG(2, sHD, α0(T ), δ,C)

dT
= δC

(
1 + e

δC
sHD

)
α′

0(T ) < 0. (M18)

Thus, from (M18) we get that

G(2, sHD, α0, δ,C) > lim
T →∞

G(2, sHD, α0(T ), δ,C) = G(2, sHD, α∞, δ,C)

= δC
(
eδC + e

δC
sHD

+δC + sHD − 1
)

+ e
δC
sHD

[
4 + δC

(
1 − sHD

)]− 4e
δC
sHD

+ δC
2 .

(M19)

Without loss of generality, we replace the term δC > 0 in (M19) by a variable r > 0,
denoting

g(sHD, r) ≡ r
(
er + e

r
sHD

+r + sHD − 1
)

+ e
r

sHD

[
4 + r

(
1 − sHD

)]− 4e
r

sHD
+ r

2 .

Then,

∂g

∂sHD

(sHD, r) = re
r

sHD
+ r

2

{
4 − re

r
2 + s2

HDe− r
sHD

− r
2 − e− r

2

[
4 + r

(
1 − sHD

)+ s2
HD

]}
s2

HD

.

(M20)
We denote the expression in curly brackets in (M20) by

γ
(
sHD, r

) ≡ 4 − re
r
2 + s2

HDe− r
sHD

− r
2 − e− r

2
[
4 + r

(
1 − sHD

)+ s2
HD

]
.

Then

∂γ

∂sHD

(
sHD, r

) = e− r
sHD

− r
2

[
e

r
sHD (r − 2sHD) + r + 2sHD

]
. (M21)

We denote the expression inside the square brackets in (M21) by

θ(r, sHD) ≡ e
r

sHD (r − 2sHD) + r + 2sHD,

and we get that

lim
r→0

θ(r, sHD) = 0, (M22)

that

∂2θ

∂r2
(r, sHD) = re

r
sHD

s2
HD

> 0, (M23)
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and that

∂θ

∂r
(r, sHD) = e

r
sHD (r − sHD) + sHD

s2
HD

−−−−→
r→0

0. (M24)

Combining (M24) and (M23) yields
∂θ

∂r
(r, sHD) > 0 which, together with (M22),

yields θ(r, sHD) > 0 and, finally, we get that

∂γ

∂sHD

(
sHD, r

)
> 0. (M25)

From (M25) we get that for every sHD > 0 and r > 0,

γ
(
sHD, r

)
< lim

sHD→∞
γ
(
sHD, r

) = 1

2

[
8e

r
2 − 8 − 2r − 2rer + r2

]
.

Let

ϕ(r) ≡ 8e
r
2 − 8 − 2r − 2rer + r2.

It follows that

lim
r→0

ϕ(r) = 0, (M26)

that

ϕ ′′(r) = −(
2er − 2

)−
(

2er − 2e
r
2

)
− 2rer < 0, (M27)

and that

ϕ ′(r) = 2
[
2e

r
2 + r − er

(
1 + r

)− 1
]

−−−−→
r→0

0. (M28)

Combining (M27) and (M28) yields ϕ ′(r) < 0 which, together with (M26), implies
that for every r > 0, ϕ(r) < 0 and, consequently, γ

(
sHD, r

)
< 0, so that also

∂g

∂sHD

(sHD, r) < 0. (M29)

Now (M29) implies that for every sHD > 0 and r > 0

g(sHD, r) > lim
sHD→∞

g(sHD, r) = 4 − 4e
r
2 + 2rer − r2 ≡ ρ(r).

Because lim
r→0

ρ(r) = 0 and ρ ′(r) = 2
(
er − e

r
2

) + 2r
(
er − 1

)
> 0, then

0 < ρ(r) < g(sHD, r) for every sHD > 0 and r > 0 which, upon incorporating (M15)
and (M19), gives us that
0 < G(2, sHD, α∞, δ,C) < G(2, sHD, α0, δ,C) < G(2, sHD, α, δ,C). This completes
the proof of Supportive Lemma M1. Q.E.D.
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Returning to the main line of the proof of Lemma M3, from the properties of the
function G(·) in Supportive Lemma M1 we infer that the derivative of EU(·) with
respect to sHH in (M13) is positive on the right-hand border of the permitted range
(sHH = 2), and that it can cross zero only once in the range sHH ∈ (0,2).

Consequently,

∀sHD∈(0,1+α]∀sHH ∈(0,2)EU(sHH, sHD) < max
{

EU(2, sHD), lim
sHH →0

EU(sHH, sHD)
}

,

namely for every sHD ∈ (0,1 + α] either the maximum with respect to sHH is obtained
at the right border (sHH = 2), or it cannot be obtained if the function increases as
sHH → 0 beyond the level EU(2, sHD) and, thus, we can constrain our search for
maxima to the borders sHH = 2 and sHH → 0.

Investigating first the border sHH = 2,

∂EU

∂sHD

(2, sHD) = e− δC
2 − δC

sHD

[(
1 − e

δC
sHD

)
s2

HD + δC
(
α + sHD − 1

)]
2δs2

HD

. (M30)

We note that the sign of
∂EU

∂sHD

(2, sHD) for sHD ∈ (0,1 + α] is the same as that of the

expression inside the square brackets in (M30), which we denote by

H(sHD, α, δ,C) ≡
(

1 − e
δC
sHD

)
s2

HD + δC
(
α + sHD − 1

)
. (M31)

We next will show that H(sHD, α, δ,C) is concave with respect to sHD ∈ (0,1 + α]
and, using Supportive Lemmas M2 and M3 below, we will also show that
H(1 + α,α, δ,C) > 0.

Supportive Lemma M2. H(sHD, α, δ,C) is a concave function with respect to
sHD ∈ (0,1 + α], and H(1 + α,α, δ,C) > 0.

Proof. Attending first to the concavity property, from (M31) we get that

∂2H

∂s2
HD

(sHD, α, δ,C) = 2 + e
δC
sHD

[
δC

(
2sHD − δC

)
s2

HD

− 2

]
≡ h(sHD, α, δ,C).

We next get that

∂h

∂δ
(sHD, α, δ,C) = −δ2C3e

δC
sHD

s3
HD

< 0,

and, therefore,

h(sHD, α, δ,C) < lim
δ→0

h(sHD, α, δ,C) = 0,

which yields
∂2H

∂s2
HD

(sHD, α, δ,C) < 0.
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To determine the sign of H(1 + α,α, δ,C), we denote

H(1 + α,α, δ,C) = 2αδC − (1 + α)2
(
e

δC
1+α − 1

)
≡ μ(α, δ,C).

We get that

∂μ

∂α
(α, δ,C) = e

δC
1+α

[
δC − 2(1 + α)

]+ 2(1 + α + δC),

that

∂2μ

∂α2
(α, δ,C) = 2 − e

δC
1+α

[
δ2C2 + 2(1 + α)2 − 2δC(1 + α)

]
(1 + α)4

,

and that

∂3μ

∂α3
(α, δ,C) = δ3C3e

δC
1+α

(1 + α)4
> 0. (M32)

From (M32) we get that

∂2μ

∂α2
(α, δ,C) < lim

α→∞
∂2μ

∂α2
(α, δ,C) = 0,

which, in turn, implies that

∂μ

∂α
(α, δ,C) > lim

α→∞
∂μ

∂α
(α, δ,C) = δC > 0. (M33)

We note that (M33) implies that for α > α0 (recalling (M2)),

μ(α, δ,C) > μ(α0, δ,C).

Treating α0 as a function of T , from (M16) and (M33) it follows that

dμ(α0(T ), δ,C)

dT
= α′

0(T )
∂μ

∂α
(α, δ,C) < 0.

Recalling (M17), we get that

μ(α0, δ,C) > lim
T →∞

μ(α0(T ), δ,C) = μ(α∞, δ,C)

= 2eδCδC − (
1 + eδC

)2
(
e

δC

1+eδC − 1
)
.

Without loss of generality, we replace δC > 0 in the preceding expression with a
variable r > 0, and we rewrite this expression as

f (r) = 2err − (
1 + er

)2
(
e

r
1+er − 1

)
. (M34)
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We next show that f (r) > 0 for r > 0. Using the following representation of the
exponential function

ey = 1 + y

1! + y2

2! + y3

3! + y4

4! + . . . + yn

n! + . . . , (M35)

we can likewise write

e
r

1+er − 1 = r

1 + er
+ r2

2!(1 + er)2
+ r3

3!(1 + er)3
+ r4

4!(1 + er)4
+ . . .

+ rn

n!(1 + er)n
+ . . . ,

and, therefore,

(
1 + er

)2
(
e

r
1+er − 1

)
= r(1 + er) + r2

2! + r3

3!(1 + er)
+ r4

4!(1 + er)2
+ . . .

+ rn

n!(1 + er)n−2
+ . . . .

(M36)

Using (M35) again,

err = r + r2

1! + r3

2! + r4

3! + . . . + rn

(n − 1)! + . . . ,

and, thus,

2err = err + err = err + r + r2

1! + r3

2! + r4

3! + . . . + rn

(n − 1)! + . . .

= r(er + 1) + r2

1! + r3

2! + r4

3! + . . . + rn

(n − 1)! + . . . .

(M37)

Combining (M36) and (M37),

2err − (
1 + er

)2
(
e

r
1+er − 1

)

=
[
r2

1! − r2

2!
]

+
[
r3

2! − r3

3!(1 + er)

]
+
[
r4

3! − r4

4!(1 + er)2

]
+ . . .

+
[

rn

(n − 1)! − rn

n!(1 + er)n−2

]
+ . . .

= r2

[
1

1! − 1

2!
]

+ r3

[
1

2! − 1

3!(1 + er)

]
+ r4

[
1

3! − 1

4!(1 + er)2

]
+ . . .

+ rn

[
1

(n − 1)! − 1

n!(1 + er)n−2

]
+ . . .

=
∞∑

n=2

rn

[
1

(n − 1)! − 1

n!(1 + er)n−2

]
> 0,
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where the inequality is due to r > 0, and because
1

(n − 1)! − 1

n!(1 + er)n−2
> 0 for

any n ≥ 2. Consequently, f (r) > 0 for r > 0.
In sum: 0 < μ(α∞, δ,C) < μ(α0, δ,C) < μ(α, δ,C), which yields

H(1+α,α, δ,C) > 0. This completes the proof of Supportive Lemma M2. Q.E.D.

We now return to the main line of the proof of Lemma M3, noting that from the
properties of the H(·) function displayed in Supportive Lemma M2 we infer that
the derivative with respect to sHD in (M30) is positive on the right-hand border of
the permitted range (sHD = 1 + α), and that it can cross zero only once in the range
sHD ∈ (0,1 + α). Therefore, either the maximum at the border sHH = 2 is obtained for
sHD = 1 +α, or it cannot be obtained if the function increases for sHD → 0 beyond the
level EU(2,1 + α). Namely

∀sHD∈(0,1+α)EU(2, sHD) < max
{

EU(2,1 + α), lim
sHD→0

EU(2, sHD)
}

.

For the point (sHH, sHD) = (2,1 + α),

EU(2,1 + α) = 1

δ

[
1 + αe− (3+α)δC

2(1+α) − (1 + α)e−δT

]
. (M38)

Comparing the expression for EU(2,1 + α) in (M38) with UA (recalling (M7)), and
drawing on the assumption that under condition (M2) saving alone for migration is
rational, we see that

EU(2,1 + α) > UA > UH, (M39)

where the first inequality in (M39) is due to
(3 + α)

2(1 + α)
< 1 for any α > 1.

For the limit sHD → 0 at the border sHH = 2,

lim
sHD→0

EU(2, sHD) = 1

2δ

[
2 + (

1 + α
)(

e−δC/2 − 2e−δT
)]

and from a comparison of this last expression with (M38), we get that

EU(2,1 + α) − lim
sHD→0

EU(2, sHD) = 1

2δ

[
2αe− (3+α)δC

2(1+α) − (1 + α)e− δC
2

]
.

Now, we denote

J (α,C, δ) ≡ 2αe− (3+α)δC
2(1+α) − (1 + α)e− δC

2

and we replace the variable α with b = 2

α + 1
. Because α > α0 > 1, then b ∈ (

0, b0

)
,

where b0 = 2

α0 + 1
< 1. Thus,

J

(
2

b
− 1,C, δ

)
= 2

b
e− δC(1+b)

2

[
2 − b − e

δCb
2

]
. (M40)
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Obviously,
2

b
e− δC(1+b)

2 > 0 and, therefore, the sign of J

(
2

b
− 1,C, δ

)
is the same as

that of the expression inside the square brackets in (M40). We denote

K(b,C, δ) ≡ 2 − b − e
δCb

2 .

Then
∂K

∂b
(b,C, δ) = −

(
1 + 1

2
e

δCb
2 δC

)
< 0 and, therefore, K(b,C, δ)>K(b0,C, δ).

Because b0 = 2

α0 + 1
< 1, it follows from (M2) that

b0(T ) = 2
[
eδ(T −3C/2) − 1

]
eδT + eδ(T −3C/2) − 2

,

where we have expressed b0 as a function of T . Then,

b′
0(T ) = 2

[
eδT − eδ(T −3C/2)

]
δ[

eδT + eδ(T −3C/2) − 2
]2 > 0

and

lim
T →∞

b0(T ) = 2

1 + eδ3C/2
≡ b∞.

Furthermore,

dK(b0(T ),C, δ)

dT
= −1

2
b′

0(T )
(

2 + δCe
δCb0(T )

2

)
< 0,

and, thus,

K(b0(T ),C, δ) > lim
T →∞

K(b0(T ),C, δ) = K(b∞,C, δ) = 2 − e
δC

1+eδC − 2

1 + eδC
.

Without loss of generality, we once again replace δC > 0 in the preceding expression

by r > 0, and we denote κ(r) ≡ 2 − e
r

1+er − 2

1 + er
. We note that κ(0) = 0, and that

κ ′(r) = 2er − e
r

1+er + e

(
1+ 1

1+er

)
r
(
r − 1

)
(
1 + er

)2 .

Let

I (r) ≡ 2er − e
r

1+er + e

(
1+ 1

1+er

)
r
(
r − 1

)
.

For r ∈ (0,1), I (r) > 2er − e
r
2 + e

(
1+ 1

2

)
r
(
r − 1

)
. We denote

M(r) ≡ 2er − e
r
2 + e

3
2 r
(
r − 1

)
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for r ∈ [0,1). We then get that

M(0) = 0,

that

M ′(r) = 1

2
e

r
2

[
4e

r
2 − er

(
1 − 3r

)− 1
]
,

that

M ′(0) = 1,

and that

M ′′(r) = 1

4
e

r
2

[
8e

r
2 + er

(
9r + 3

)− 1
]

> 0

for r ∈ (0,1) and, thus, M ′(r) > 0, and M(r) > 0 for r ∈ (0,1).
For r ≥ 1,

I (r) ≥ 2er − e
r
2 > 0,

and, therefore, I (r) > 0 for all r > 0. It then follows that κ ′(r) > 0 for r > 0 which,
combined with κ(0) = 0, implies that κ(r) > 0 for r > 0.

Thus, we conclude that 0 < K(b∞,C, δ) < K(b,C, δ) = J

(
2

b
− 1,C, δ

)
, and

that EU(2,1 + α) − lim
sHD→0

EU(2, sHD) > 0. Therefore, the maximum at the border

sHH = 2 is obtained for sHD = 1 + α.
Now, at the border sHH → 0, the limit function is

lim
sHH →0

EU(sHH, sHD) = 1

δ

[
2 − (1 + α)e−δT

]
,

this limit is constant with respect to sHD, and

UH − lim
sHH →0

EU(sHH, sHD) = e−δT (α − 1)

δ
> 0,

so that adding in (M39) yields EU(2,1 + α) > lim
sHH →0

EU(sHH, sHD).

Summing up the discussion pertaining to the maximization problem (M12), the
global maximum is obtained at (s∗

HH, s∗
HD) = (2,1 + α). Returning to the original

problem (M11), we obviously get that s∗
H1 = 1, s∗

H2 = 1, s∗
D

= α, and because

C

2s∗
H1

+ C

s∗
H2 + s∗

D

= C

2
+ C

1 + α
<

C

2
+ C

2
= C < T,

the last condition in (M11) is also satisfied. This finally concludes the proof of
Lemma M3. Q.E.D.
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We see that when they save at the optimal rates, the time of departure of the
winner of the draw and the time of departure of the loser of the draw are, respectively,

TW ≡ TW(s∗
H1) = 1

2
C

C

2s∗
H1

= 1

2
C, and

TL ≡ TL(s
∗
H1, s

∗
H2, s

∗
D
) = C

2s∗
H1

+ C

s∗
D + s∗

H2

= 1

2
C + 1

1 + α
C = 3 + α

2(1 + α)
C. Thus, the

maximum level of utility attainable under a complete-compliance agreement is

EUCC(1,1, α) = 1

2
UW(1,1, α) + 1

2
UL(1,1, α) =

TL∫
0

e−δtu(0)dt +
T∫

TL

e−δtu(α)dt.

By comparison of the right-hand side of the preceding expression with (3), we see
that

EUCC(1,1, α) = UH

W = UL, (M41)

where UH
W

and UL are, respectively, the lifetime utility of an honest winner ((2) in the
main text of the paper), and the lifetime utility of a loser of the draw ((3) in the main
text of the paper).

We next dispose of the assumption that joint saving is of the complete-compliance
type, so as to incorporate the possibility that the winner of the draw will renege,
neglecting to contribute funds to enable the loser of the draw to migrate. We show
that under assumption (M2), the cheated individual will find it desirable to start saving
alone from scratch at the rate sCh (subscript Ch stands for cheated).17 We denote the
utility of the loser of the draw when the winner of the draw reneges by

UCh(sH1, sCh) ≡
TW (sH1)∫

0

e−δtu(1 − sH1)dt +
TCh(sH1,sCh)∫
TW (sH1)

e−δtu(1 − sCh)dt

+
T∫

TCh(sH1,sCh)

e−δtu(α)dt,

where TCh(sH1, sCh) ≡ C

2sH1

+ C

sCh

is the point in time at which the cheated individual

can take the migration journey after saving alone at the rate sCh. In the following
lemma we show, given that condition (M2) regarding α holds, the cheated individual
indeed finds it rational to start saving from scratch, and that the saving rates that
maximize UCh(sH1, sCh) are s∗

H1 = s∗
Ch = 1.

LemmaM4. If C < 2T / 3 and the condition (M2) is met, then saving alone in order to
migrate after being cheated is a desirable choice for an individual, that is, there exists
0 ≤ sH1, sCh ≤ 1 such that UCh(sH1, sCh) > UH . For such α, the function UCh(sH1, sCh)

obtains a maximum at s∗
H1 = s∗

Ch = 1.

17In the main text of the paper we provide a rationale why striking a joint saving agreement with yet
another individual is not an appealing option for a cheated individual.
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Proof. The proof of this lemma is structured as follows. First, we will show that
conditions C < 2T / 3 and (M2) are sufficient for saving from scratch in order
to migrate to be a desirable act for an individual after being cheated in a joint
saving scheme. Next, we will define an optimization problem for the utility function
UCh(sH1, sCh), and we will exhibit Supportive Lemma M3, which serves to reveal a
property of the derivative of UCh(sH1, sCh) with respect to sH1. This property will allow
us to determine that the maximum value of UCh(sH1, sCh) is obtained at s∗

H1 = s∗
Ch = 1.

To show that if conditions C < 2T / 3 and (M2) hold, then an individual who was
cheated in a joint saving scheme will be inclined to save for migration from scratch,
we let sH1 = sCh = 1. Then, the lifetime utility of a cheated individual is

UCh(1,1) = 1

δ

[
1 + αe−3δC/2 − (1 + α)e−δT

]
.

The requirement that the migration of a cheated individual after saving sH1 = sCh = 1
per month is a gainful option is tantamount to the condition UCh(1,1) − UH > 0,
where UH defined in (M1) is the lifetime utility of an individual who spends his
entire working life in the home country. We note that

UCh(1,1) − UH = 1

δ

[
αe−3δC/2 − (α − 1)e−δT − 1

]
,

which translates into the condition

α >
eδT − 1

eδ(T −3C/2) − 1

for UCh(1,1) − UH > 0, which is (M2). When condition (M2) holds, not migrating
after a period of saving any amount s > 0 in an unsuccessful joint saving, which is
surmised by the utility function

UCh2(s) =
C/s∫
0

e−δtu(1 − s)dt +
T∫

C/s

e−δtu(1)dt,

is not preferred to saving the amount of 1 per month while in a futile joint saving,
and saving alone from scratch the amount of 1 per month. To see this consideration
clearly, we note that, obviously, UCh2(s) < UH , and then, by incorporating (M2), we
get that UCh2(s) < UH < UCh(1,1).

We formulate the maximization problem of a cheated individual as

max
sH1,sCh

{
UCh(sH1, sCh)

}

= max
sH1,sCh

{
2 − sH1

δ

(
1 − e− δC

2sH1

)
+ 2 − sCh

δ

(
e− δC

2sH1 − e− δC
2sH1

− δC
sCh

)

+ 1 + α

δ

(
e− δC

2sH1
− δC

sCh − e−δT

)}

s.t. 0 < sH1, sCh ≤ 1,
C

2sH1

+ C

sCh

≤ T .

(M42)
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Replicating steps that are similar to the ones taken in the course of the proof of
Lemma M3, assuming that α satisfies condition (M2), and ignoring temporarily the
second constraint in (M42) which, as shown at the end of the proof of Lemma M4, is
satisfied at the optimum anyway, we get that

∂UCh

∂sCh

(sH1, sCh) = e− δC
2sH1

− δC
sCh

[
s2

Ch

(
1 − e

δC
sCh

)
+ δC

(
α + sCh − 1

)]
2δs2

Ch

. (M43)

The expression inside the square brackets in (M43) is the same as that inside the
square brackets in (M4) for sA = sCh. Therefore, drawing on the proof of Lemma M2,

we note that
∂UCh

∂sCh

(sH1,1) > 0, and
∂UCh

∂sCh

(sH1, sCh) can cross zero only once for

sCh ∈ (0,1). Consequently,

∀sH1∈(0,1)∀sCh∈(0,1)UCh(sH1, sCh) < max
{

UCh(sH1,1), lim
sCh→0

UCh(sH1, sCh)
}

.

Thus, just as in the case of the function EU(·) in the proof of Lemma M3, either
the maximum is reached at the border sCh = 1, or it is not obtained if the function
increases as sCh → 0.

Next, we deal with the properties of UCh(sH1,1). We get that

∂UCh

∂sH1

(sH1,1) = e− δC
2sH1

−δC

{
δC

[
α + eδC

(
sH1 − 1

)]+ 2eδC

(
1 − e

δC
2sH1

)
s2
H1

}
2δs2

H1

. (M44)

Denoting the expression inside the curly brackets in (M44), which determines the

sign of
∂UCh

∂sH1

(sH1,1), by L(sH1, α, δ,C), we show that L(·) is a concave function of

sH1 ∈ (0,1], and that L(1, α, δ,C) > 0. This we do by using the following supportive
lemma.

Supportive LemmaM3. For the function

L(sH1, α, δ,C) ≡ δC
[
α + eδC

(
sH1 − 1

)]+ 2eδC

(
1 − e

δC
2sH1

)
s2
H1

it holds: (i) that the function is concave with respect to sH1 ∈ (0,1], and (ii) that
L(1, α, δ,C) > 0.

Proof. We begin by proving part (i). From

∂L

∂sH1

(sH1, α, δ,C) = eδC

[
δC + e

δC
2sH1

(
δC − 4sH1

)+ 4sH1

]

we get that

∂2L

∂s2
H1

(sH1, α, δ,C) = eδC

{
4 + e

δC
2sH1

[
δC

(
4sH1 − δC

)
2s2

H1

− 4

]}
≡ l(sH1, α, δ,C).
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Because

∂l

∂δ
(sH1, α, δ,C) = −δ2C3e

δC
2sH1

2s3
H1

< 0,

then l(sH1, α, δ,C) < lim
δ→0

l(sH1, α, δ,C) = 0, which yields
∂2L

∂s2
H1

(sH1, α,δ,C) < 0.

Proceeding to prove part (ii), from the definition of the function L(·) we get that

L(1, α, δ,C) = 2eδC − 2e
3δC

2 + αδC.

We note that

∂L

∂α
(1, α, δ,C) = δC > 0,

and, consequently, upon taking into account (M2), L(1, α, δ,C) > L(1, α0, δ,C).
Treating α0 as a function of T , we then get from (M2) that

α′
0(T ) = −eδT +3δC/2

(
e3δC/2 − 1

)
δ(

eδT − e3δC/2
)2 < 0

and that

lim
T →∞

α0(T ) = e3δC/2 ≡ α∞.

Then,

dL(1, α0(T ), δ,C)

dT
= α′

0(T )
∂L

∂α
(1, α, δ,C) < 0,

and, thus,

L(1, α0, δ,C) > lim
T →∞

L(1, α0(T ), δ,C) = L(1, α∞, δ,C)

= 2eδC − 2e
3δC

2 + e
3δC

2 δC = eδC

[
2 + e

δC
2
(
δC − 2

)]
.

Without loss of generality, we once again replace the product δC > 0 in the
preceding expression by a variable r > 0, denoting the term in square brackets by
ν(r) = 2 + e

r
2 (r − 2). We note that

ν ′(r) = 1

2
re

r
2 > 0,

so that ν(r) > lim
r→0

ν(r) = 0. Consequently,

0 < L(1, α∞, δ,C) < L(1, α0, δ,C) < L(1, α, δ,C), which concludes the proof of
Supportive Lemma M3. Q.E.D.
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Returning to the proof of Lemma M4, from the properties of the function L(·)
displayed in Supportive Lemma M3, we infer that either the maximum of UCh(sH1,1)

is obtained for sH1 = 1, or that it cannot be obtained if this function increases for
sH1 → 0 beyond the level UCh(1,1).

Recalling (M2), in (sH1, sCh) = (1,1),

UCh(1,1) > UH, (M45)

whereas for sCh = 1 and sH1 → 0,

lim
sH1→0

UCh(sH1,1) = 1

δ

[
2 − (1 + α)e−δT

]
. (M46)

Comparing lim
sH1→0

UCh(sH1,1) with UH (as defined in (M1)) yields

UH − lim
sH1→0

UCh(sH1,1) = 1

δ
(α − 1)e−δT > 0, (M47)

and, consequently, upon making use of (M45), we get that
UCh(1,1) > UH > lim

sH1→0
UCh(sH1,1) and, therefore, for sCh = 1 the maximum is

obtained at sH1 = 1.
We now investigate the case of sCh → 0. We get that

lim
sCh→0

UCh(sH1, sCh) = 1

δ

[
2 + sH1

(
e− δC

2sH1 − 1
)

− (1 + α)e−δT

]

and then

∂2

∂s2
H1

[
lim
sCh→0

UCh(sH1, sCh)
]

= δC2e− δC
2sH1

4s3
H1

> 0.

Consequently, the function lim
sCh→0

UCh(sH1, sCh) is convex with respect to sH1 ∈ (0,1],
which implies that either it obtains a maximum for sH1 = 1, or a maximum cannot be
obtained if the function increases for sH1 → 0 beyond the level lim

sCh→0
UCh(1, sCh). We

note that

lim
sH1→0

[
lim
sCh→0

UCh(sH1, sCh)
]

= 1

δ

[
2 − (1 + α)e−δT

]
.

Comparing this last expression with (M46), and using (M47), we see that

lim
sH1→0

[
lim
sCh→0

UCh(sH1, sCh)
]

= lim
sH1→0

UCh(sH1,1)

and, therefore, UCh(1,1) > UH > lim
sH1→0

[
lim
sCh→0

UCh(sH1, sCh)
]
. Also

lim
sCh→0

UCh(1, sCh) = 1

δ

[
1 + e−δC/2 − (1 + α)e−δT

]
,
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and

UH − lim
sCh→0

UCh(1, sCh) = 1

δ

[(
1 − e−δC/2

)+ (α − 1)e−δT
]
> 0

because
(
1 − e−δC/2

)
> 0 for δC > 0 and α > 1. Therefore,

UCh(1,1) > UH > lim
sCh→0

UCh(1, sCh).

Summing up the analysis pertaining to the maximization problem (M42),
UCh(1,1) is the global maximum over (sH1, sCh) = (0,1] × (0,1], obtained for
(s∗

H1, s
∗
Ch) = (1,1). Because

C

2s∗
H1

+ C

s∗
Ch

= C

2
+ C

1
= 3C

2
,

and because we have assumed that C < 2T / 3, then also the constraint
C

2sH1

+ C

sCh

≤ T

in (M42) is satisfied for (s∗
H1, s

∗
Ch) = (1,1). This concludes the proof of Lemma M4.

Q.E.D.

It follows then that after TW = C/ 2 months of a futile joint saving, the cheated
individual will spend an additional C months saving, this time doing so alone. We
denote by TCh ≡ TCh(s

∗
H1, s

∗
Ch) = C/ (2s∗

H1) + C/ s∗
Ch = 3C/ 2 the point in time at which

he will at last be able to migrate. Thus, the utility of the loser of the draw when the
winner of the draw reneges, namely UCh, as introduced in (4) in the main text of the
paper, is

UCh = UCh(1,1) =
TCh∫
0

e−δtu(0)dt +
T∫

TCh

e−δtu(α)dt.

Then, the expected utility of an honest would-be migrant j (an individual who is
inclined to keep his part of the agreement if he were the winner of the draw) derived
from striking a joint saving agreement with individual i is

EUH (sH1, sH2, sD, sCh)

= 1

2
EUCC(sH1, sH2, sD) + 1

2

[
pEUCC(sH1, sH2, sD) + (

1 − p
)
UCh(sH1, sCh)

]

= 1 + p
j

i

2
EUCC(sH1, sH2, sD) + 1 − p

j

i

2
UCh(sH1, sCh).

(M48)

Lemma M5. If T > 3C/ 2 and condition (M2) is met, then the saving rates
sH1, sH2, sD, sCh that maximize EUH (sH1, sH2, sD, sCh) are s∗

H1 = s∗
H2 = s∗

Ch = 1, and
s∗
D

= α for any level of p.
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Proof. We can write the maximization problem that pertain to the expected utility
defined in (M48) as

max
sH1,sH2,sD,sCh

{
EUH (sH1, sH2, sD, sCh)

}

= max
sH1,sH2,sD,sCh

{
1 + p

j

i

2
EUCC(sH1, sH2, sD) + 1 − p

j

i

2
UCh(sH1, sCh)

}
.

First, we note that because (1 + p
j

i ) ≥ 0 and (1 − p
j

i ) ≥ 0, there is no “trade-off”
between the maximized functions EUCC(·) and UCh(·) (both functions enter the
objective function with non-negative coefficients). Second, the maximization of
EUCC(·) and the maximization of UCh(·) each yields the same result with respect
to the common variable sH1; that is, in both cases s∗

H1 = 1.
Summing up: the values of sH1, sH2, sD, sCh that maximize EUH (·) are the same

as those that maximize EUCC(·) (s∗
H1, s

∗
H2, s

∗
D

from Lemma M3), and UCh(·) (s∗
H1, s

∗
Ch

from Lemma M4) separately. Q.E.D.

Thus, the optimal level of the expected utility of a honest migrant, namely EUH ,
as introduced in (5) in the main text of the paper, is

EUH = EUH (s∗
H1, s

∗
H2, s

∗
D
, s∗

Ch) = 1 + p
j

i

2
EUCC(1,1, α) + 1 − p

j

i

2
UCh(1,1)

= 1 + p
j

i

2
EUCC + 1 − p

j

i

2
UCh

= 1 + p
j

i

2
UH

W
+ 1 − p

j

i

2
UCh,

where the last equality above follows from (M41).
The expected utility of a dishonest would-be migrant j from striking a joint saving

agreement with individual i is

EUD(sH1, sH2, sD, sCh)

= 1

2
UD

W
(sH1) + 1

2

[
p

j

i EUCC(sH1, sH2, sD) + (
1 − p

j

i

)
UCh(sH1, sCh)

]
,

where superscript D stands for dishonest, and

UD

W (sH1) =
TD(sH1)∫

0

e−δtu(1 − sH1)dt +
T∫

TD(sH1)

e−δtu(α)dt

is the utility of a dishonest individual who ends up as the winner of the draw, and who
uses the savings of his co-saver to embark on migration after TD(sH1) ≡ C/ (2sH1)

months. By proceeding in a manner that is similar to the ones undertaken in proving
Lemmas M4 and M5, it can be shown that for the dishonest individual, the saving
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rates that maximize EUD(sH1, sH2, sD, sCh) are s∗
H1 = s∗

H2 = s∗
Ch = 1, and s∗

D
= α. Then,

TD ≡ TD(s∗
H1) = C/ (2s∗

H1) = C/ 2 = TW ,

UD

W
= UD

W
(s∗

H1) =
TW∫
0

e−δtu(0)dt +
T∫

TW

e−δtu(α)dt,

and the expected utility of a dishonest would-be migrant, namely EUD , as introduced
in (6) in the main text of the paper, is

EUD = EUD(s∗
H1, s

∗
H2, s

∗
D
, s∗

Ch) = 1

2
UD

W
+ 1

2

[
p

j

i EUCC + (
1 − p

j

i

)
UCh

]

= 1

2
UD

W
+ 1

2

[
p

j

i UL + (
1 − p

j

i

)
UCh

]
,

where the last equality above follows from (M41).
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